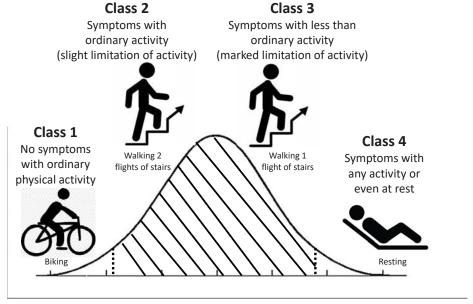


PERIPHERAL LUNG-TARGETED THERAPEUTICS TO TREAT CARDIOPULMONARY DISEASES

Pulmonary Arterial Hypertension (PAH)

Source: Farber, 2004

- PAH is a chronic disease characterized by proliferation and remodeling of vascular endotheli and smooth muscle cells in the small pulmonary arteries and arterioles
 - ~ 50,000 PAH patients in the United States
 - ~ 80% are female
 - Mean age is 53 ± 15 years


> Most common symptoms are:

- Dyspnea (i.e. shortness of breath)
- · Physical fatigue
- · Low exercise capacity

PAH Functional Classes

Patient's Quality of Life (QoL) is affected by the progressive increase in symptoms over time

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

PAH symptoms and treatments have a profound impact on a patient's Quality of Life (QoL)

Impact of PAH on daily life

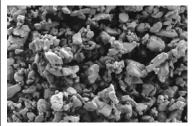
- · Inability to perform at work
- · Difficulty completing household & family activities
- · Impact on relationships
- · Fear of being alone during severe bouts of symptoms
- · Embarrassment of experiencing symptoms in public
- · Loss of independence or of purpose
- QoL improves with a patient's ability and capacity to satisfy his or her needs

Improving a patient's QoL is an unmet medical need

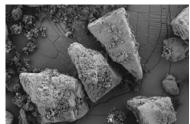
Treatment designed to improve the QoL of PAH patients

Key features:

- 'As-needed' dosage form and convenient (i.e., PRN medication)
- Rapid onset of action (within ~15 min)
- Acceptable duration of action (~3 h)
- No added issues over background therapy (i.e., safety, tolerability)
- Noninvasive, portable delivery system that is:
 - · Designed for PAH patients
 - Does not contribute significantly to a patient's daily treatment burden
 - · Discreetly administered outside the home
 - Simple to administer with no cleaning requirements


| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

RT234: Vardenafil Inhalation Powder

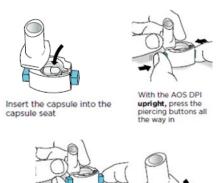

RT234 is a drug-device combination product

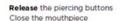
RT234 Product: AOS™ DPI delivering Vardenafil Inhalation Powder

It is an 'as-needed' treatment of PAH symptoms to improve exercise capacity, physical function, and disease-associated symptoms

Drug substanceVardenafil hydrochloride trihydrate

Drug Product
Adhesive mixture with lactose carrier particles filled into HPMC capsules


Primary Packaging
HDPE bottle / cap


Device AOS™ DPI


Dispersing the drug particles is patient driven

Patients must pierce the capsule to allow the drug to release from the capsule

- Upon inhalation, the pierced capsule will rotate allowing the drug and lactose to leave the capsule
- As the particles travel through the inhaler, the drug separates it from the lactose allowing travel to the deep lungs
- Dispersion is patient driven by their inhalation

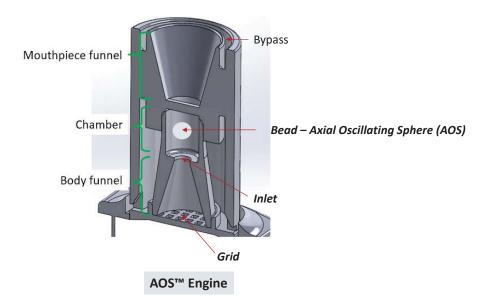
Place the mouthpiece in the mouth **over the tongue** Seal lips around the mouthpiece

Inhale with maximal effort until your lungs are full

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

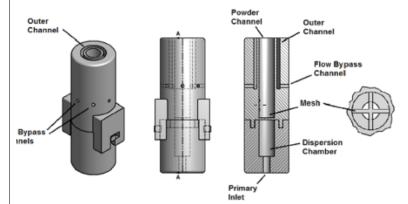
Respira's Axial Oscillating Sphere Dry Powder Inhaler (AOS™ DPI

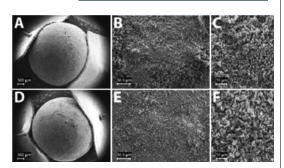
- Identical in size and shape to Plastiape's RS01 DPI
- Identical user operation (i.e., Instructions for Use)
- Differentiation can be achieved by changing the artwork, cap, or buttons


AOS™ DPI

Plastiape's RS01 DP

So where does the difference lie?
Respira's Aerosol Engine


AOS™ Aerosol Engine


| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

Evolution of the AOS™ DPI

API	Dose (mcg)	FPF (%)
Budesonide	215	83 (2%)
Fluticasone Propionate	112	81 (2%)
Albuterol Sulphate	81	91 (2%)
Salmeterol	36	89 (3%)
Tiotropium Bromide	20	85 (2%)

Drug on Bead Technology

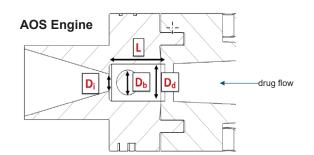
Source: Donovan MJ, Gibbons A, Pappo J, Smyth HDC: Nov resistance DPI for high efficiency delivery in a broad range of classes. Respiratory Drug Delivery 2012.

Concept evolved into using the bead as part of an aerosol engine to enhance powder dispersion

Add AOS engine onto marketed inhalers

Device	API/ Product	Dose (µg)	FPD<3μm² (μg)	AOS FPD Enhancement
Diskus	Flovent	250	30	2.2X
Diskus+AOS		230	67	2.27
НН	PDE5i	4000	632	2.6X
HH+AOS	PDESI	4000	1633	2.67
RS01	Foradil	12	1.8	1.5X
RS01+AOS	Foradii	12	2.7	1.5
RS01	PDE5i	4000	1254	1.7X
RS01+AOS	PDESI	4000	2136	1.//

Source: Hannon J et al: Novel high efficiency inhaler for PDE5i delivery. Respiratory Drug Delivery 2016

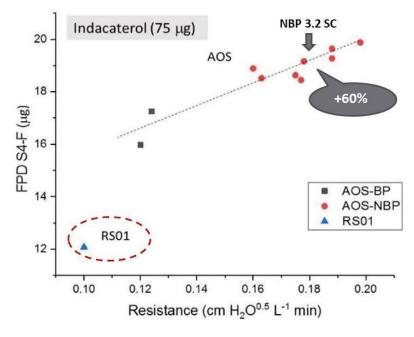

 $FPD_{<\,3\mu m}:\, {\textstyle \uparrow} 2.2x$

Handihaler® 个2.6x

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

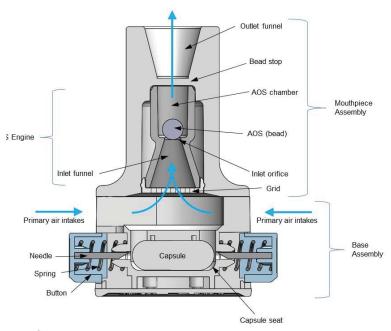
Design optimization of the AOS™ DPI

Features studied


- Use of bypass flow to lower resistance
- Dimensions of the AOS chamber
- Size of the inlet orifice
- Size, density, and material used for the bead
- · Pitch of inlet and outlet funnels
- · Shape of the exit funnel (circular vs. o

Constraints imposed

- · High device resistance
- Optimization of FPDS4-F
- Use RS01 base assembly
- Maintain external dimensions of RS01 mouthpiece


FPD_{S4-F} improves with device resistance

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

Design elements of the AOS™ DPI

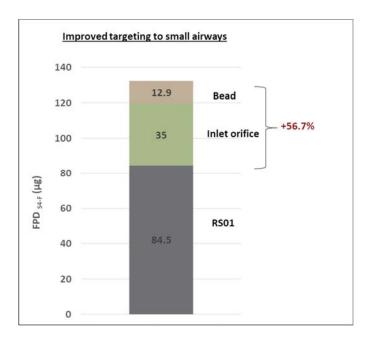
Four distinct dispersion elements lead improved dose delivery to the small airways / pulmonary arterioles

all ways / pullifolially afterioles

4. AOS (or Bead)

1. Capsule

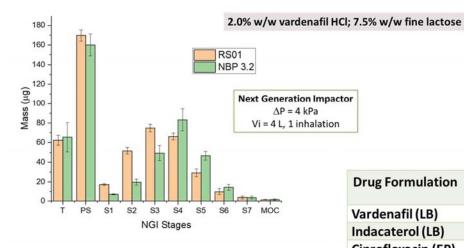
3. Inlet Orifice Increased particle velocity throu inlet orifice resulting in increase


particle shear (Bernoulli effect)

Impaction force with AOS and w

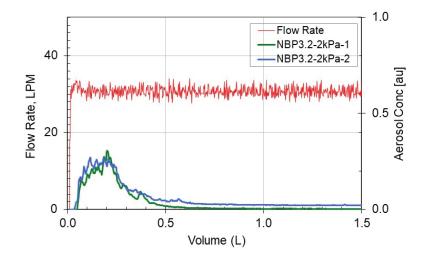
2. **Grid** Impaction force with static grid

Collision between particles as the leave the capsules during rotation


AOS[™] DPI improves $FPD_{S4-F} > 50\%$ over RS01

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

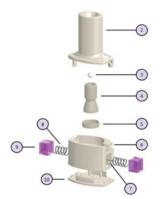
Addition of the AOS engine into the RS01 mouthpiece assembly increases peripheral delivery



Drug Formulation	FPD _{S4-F} (%ED)		
	RS01	AOS	AOS/RS0
Vardenafil (LB)	17.2	28.6	+ 70%
Indacaterol (LB)	21.7	38.6	+ 80%
Ciprofloxacin (EP)	36.0	60.7	+ 70%
Amphotericin B (EP)	84.0	94.5	+ 10%

Capsule emptying with the AOS™ DPI

- Laser photometry
- $\triangleright \Delta P = 2kPa$
- V_i ~ 0.5 L empties a 25 mg fill mass capsule



| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

Manufacturing of the AOS™ DPI

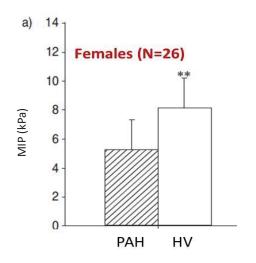
- · Manufacturer is Plastiape S.p.A., Osnago, Italy
- Plastiape S.p.A. holds the Declaration of Conformity for the AOS DPI's CE Mark
- Resins are the same as the RS01 DPI
- AOS components are molded using 2 cavity hard steel tools
- AOS (i.e. Bead) is a bought-in component using the same resin
- Assembly process is semi-automated in ISO 7 clean room
 - Hand-assemble the AOS Mouthpiece
 - Existing automation line is used for final assembly

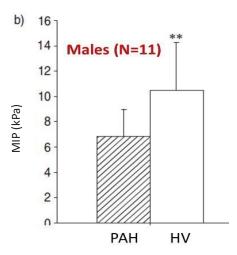
Part Name	Mate
Сар	ABS
Mouthpiece	ABS
Bead	ABS
Chamber Body	ABS
Grid	ABS
Body	ABS
Needle	Meta
Spring	Meta
Button	MAB
Base	ABS

Can a PAH patient use the AOS™ DPI?

Increased resistance

Hypothesis: Increased device resistance leads patients to provide greater inspiratory effort – withou
having to instruct them to


Capsule piercing force


· Hypothesis: Current springs used to puncture the capsules are not too difficult for the patients

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

PAH patients have decreased muscle strength

- On average, female PAH patient exhibit the MIP of a seven-year old child (Clark, 2015)
- To achieve effective dose delive a user must provide a PIP > 1 kP (Clark, 2019)

Sources: - Meyer FJ et al: Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur Repir J. 2005;25:125-130.

- Clark AR: The role of inspiratory pressures in determining the flow rate through dry powder inhalers: a review. Curr Pharm Design. 2015;21:3973-3983.
- Clark AR et al: The confusing world of dry powder inhalers: It is all about inspiratory pressures, not inspiratory flow rates. J Aerosol Med Pulm Drug Deliv. 2019; doi: 10.1089/jamp.2019.1556.

Human Factors Study in subjects with PAH

aka: "Breathing Study"

> Study objectives, to assess:

- · Impact of device resistance (high, medium & low) on inspiratory flow profiles
- Impact of inhalation instructions on inspiratory flow profiles (using the AOS DPI)
- · Subject's ability to depress the spring-loaded buttons and pierce the capsule
- Suitability of the AOS™ DPI for PAH patients use

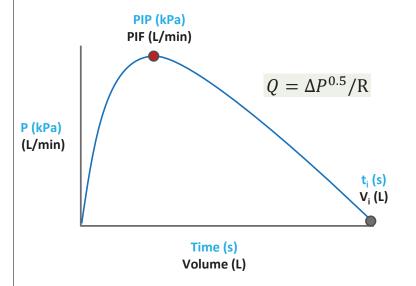
> Study conducted

- at Houston Methodist, Sandeep Sahay, MD as the Principal Investigator
- where 35 PAH patients were tested (no drug was administered)

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

Patient demographics

Characteristic	Value (N=35)	
Sex (% Female)	91.7	
Age (mean ± SD), years	49.7 ± 12.2	
Functional Class (% Class I)	2.8	
Functional Class (% Class II)	62.9	
Functional Class (% Class III)	31.4	
Functional Class (% Class IV)	2.8	
FEV ₁ % predicted (mean ± SD)	67.0 ± 18.0	
% moderately severe*	25.7	
% severe, very severe*	14.3	
6MWTD (mean ± SD), meters	394.8 ± 57.5	

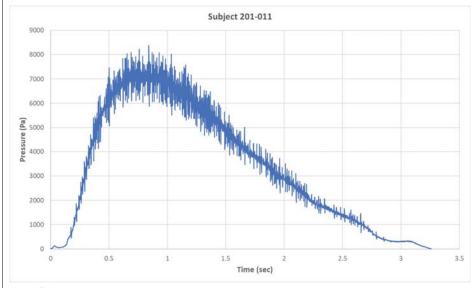

^{*}ATS/ERS Guidelines

Etiology	Subjects (%)
Idiopathic, familial	45.7
Associated with connective tissue disease	40.0
Other	14.3

Background Medications	Subjects (%)	
ERA	5.7	Monotherapy: 5.
PDE5i / ERA	28.6	
PDE5i / PC	8.6	Dual therapy: 42.9
ERA / PC	2.9	Duai tilerapy. 42
sGC/ERA	2.9	
PDE5i / ERA / PC	31.4	Triple therapy: 51
sGC / ERA / PC	20.0	Triple trierapy. 5

Idealized inspiratory flow profile

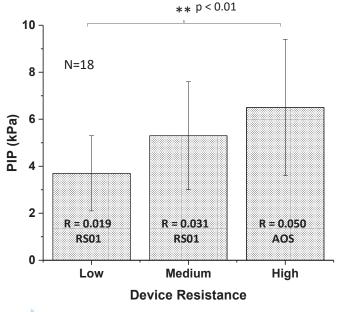
Metric	Parameter
PIP	Maximum pressure drop
PIF	Peak inspiratory flow rate
V _i	Inhalation volume
t _i	Inhalation time
Q	Flowrate
ΔΡ	Pressure drop
R	Device resistance


 ${f R}$ is measured in the lab $\Delta {f P}$, ${f PIP}$ and ${f t}_i$ are measured ${f Q}$, ${f V}_i$ and ${f PIF}$ can be calculated

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

1 subject's inspiratory profile

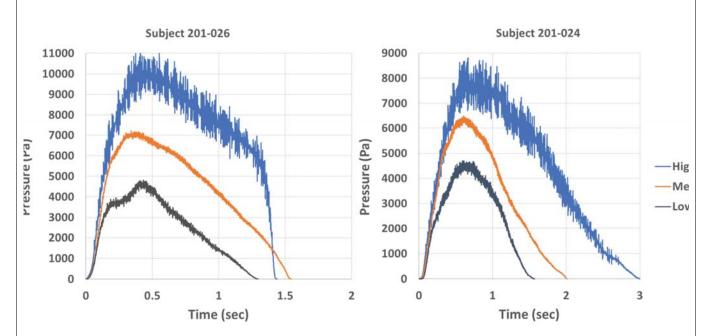
- Signature inhalation profile of the AOS™ DPI
- Fluctuations in the profile is a function of the Bead oscillating


Metric	Parameter
PIP	7.2 kPa
PIF	54 LPM
V_{i}	1.8 L
t _i	3.3 sec
R	0.16 cmH ₂ O ^{0.5} /LPM

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

-

Inhaling against a resistance encourages PAH subjects to provide greater effort

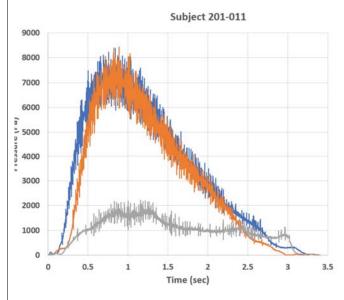


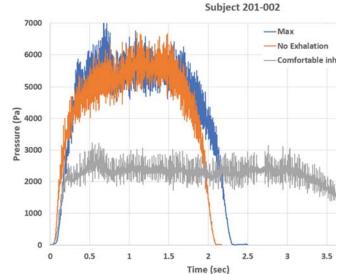
- 3 device resistances were tested (randomize
 - High-AOS™ DPI = 0.16 cmH₂O^{0.5}/LPM = 0.050
 - Med-RS01 DPI = 0.10 cmH₂O^{0.5}/LPM = 0.031
 - Low-RS01 DPI = $0.06 \text{ cmH}_2\text{O}^{0.5}/\text{LPM} = 0.019$
- Subjects were instructed to Exhale fully, Intwith maximal effort until your lungs are fully.
- Mean PIP increased from
 - · 3.7 kPa for the low resistance RS01 DPI to
 - 6.5 kPa for the high resistance AOS™ DPI
- Mean inhaled volume was
 - · 1.9 L for the RS01 DPI and
 - 1.7 L for the AOS DPI

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

Inspiratory flow profiles with varying resistance DPIs

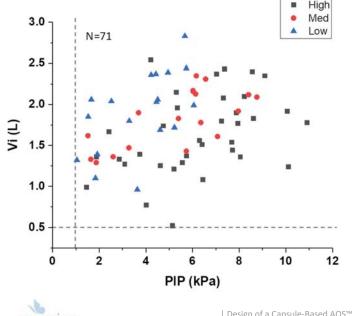
AOS™ DPI inhalation instructions are important




- ♦ AOS[™] DPI resistance = 0.16 cmH₂O^{0.5}/LPM
- 3 instructions were given in a randomized or
 - Exhale fully, Inhale with <u>maximal</u> effort until you lungs are full
 - Inhale with <u>maximal</u> effort until your lungs are fu
 - Exhale fully, Inhale with <u>comfortably</u> until your lungs are full
- Maximal effort instructions leads to a significantly greater PIP
 - 6.0 kPa for maximal effort versus
 - 2.1 kPa for comfortable effort
- Exhalation before inhalation is not critical to dose delivery

| Design of a Capsule-Based AOSTM DPI for PAH Patients: the AOSTM DPI | © 2020 Respira Therapeutics |

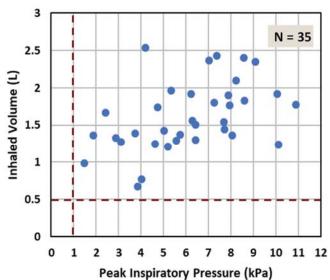
Inspiratory flow profiles with varying inhalation instructions



| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

-

Higher resistance AOS™ DPI leads PAH subjects to achieve higher PIP values


- 3 device resistances
 - High-AOS DPI = $0.16 \text{ cmH}_2\text{O}^{0.5}/\text{LPM}$
 - Med-RS01 DPI = $0.10 \text{ cmH}_2\text{O}^{0.5}/\text{LPM}$
 - Low-RS01 DPI = $0.06 \text{ cmH}_2\text{O}^{0.5}/\text{LPM}$
- ❖ All subject profiles met the target criteria of V_i > 0.5 L
- A greater proportion of the RS01 (low and medium resistance) PIP values are less than 2 kPa

respira

| Design of a Capsule-Based AOS $^{\rm TM}$ DPI for PAH Patients: the AOS $^{\rm TM}$ DPI | © 2020 Respira Therapeutics |

All PAH subjects achieved the inspiratory parameters needed for effective dose delivery

Instruction: Exhale fully, Inhale with maximal effort until your lungs are full

Mean PIP \pm SD: 6.2 \pm 2.4 kPa

Mean $V_i \pm SD : 1.6 \pm 0.5 L$

PAH patients find it 'easy' to pierce capsules

psule Piercing Metrics	Spring 1	Spring 2	Spring 3
Mean	4.09	4.40	4.66
SD	0.66	0.60	0.48
% Easy / Very Easy	83	97	100
% Medium	17	3	0
Difficult / Very Difficult	0	0	0

- Each subject was asked to puncture capsules using 3 different inhalers (n=35 randomized)
- 3 different springs forces used in a randomized order to puncture capsule
 - Spring 1 requires 12 N utilized by AOS DF
 - Spring 2 requires 8.7 N
 - Spring 3 requires 5.3 N
- Likert Scale: Ease of Piercing capsule
 - Very Easy = 5
 - Easy = 4
 - Moderate = 3
 - Difficult = 2
 - Very Difficult = 1

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

.

PAH patients have plenty of strength to puncture a capsule

Mean pinch force: $54.0 \pm 16.3 \text{ N}$ (N=26)

> 54 N exceeds the 12 N required to puncture the capsule using the AOS™ DPI

Conclusions

- ➤ AOS™ DPI is a noninvasive portable delivery system that is able to
 - · Disperse drug formulations effectively for delivery to the small arteries
 - Be used by PAH patients
- **→ AOS™ DPI holds a CE Mark and utilizes semi-automated manufacturing**
- ➤ AOS™ DPI inhaling with maximal effort
 - Helps PAH patients achieve PIP values close to their projected MIP values (MIP ~ 6 kPa)
 - Were able to achieve PIPs needed for effective dose delivery (PIP > 1 kPa)
 - Were able to achieve inhaled volumes to empty the powder from the capsule (V_i > 0.5 L)

> PAH patients

- Found piercing capsules with the AOS™ DPI to be easy
- Mean pinch force was 54.0 N exceeding the 12.0 N force required to pierce the capsules with the AOS™ DPI

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

.

Last thoughts

- ➤ AOS™ DPI Instructions For Use
 - · Patients should be instructed to "Inhale with maximal effort until their lungs are full"
 - · Exhaling before inhaling is not a critical step in dose delivery
- RT234 Product may have a profound impact on a PAH patient's Quality of Life

Acknowledgments

Aileen Gibbons Danforth Miller Dareck Heller

Edwin Parsley, DO Hugh Smyth James Hannon

> Jeffry Weers Kristi Saavedra Lisa Molloy

Mari Maurer Martin Donovan Robert Curtis

Royanne Holy
Sandeep Sahay, MD
Thomas Tarara

> iPharma Ltd. Plastiape S.p.A.

| Design of a Capsule-Based AOS™ DPI for PAH Patients: the AOS™ DPI | © 2020 Respira Therapeutics |

"I have seen a medicine that's able to breathe life into a stone"

All's Well That Ends Well — William Shakespeare